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Abstract——The physiological effects of retinoic ac-
ids (RAs) are mediated by members of two families of
nuclear receptors, the retinoic acid receptors (RARs)
and the retinoid X receptors (RXRs), which are en-
coded by three distinct human genes, RXR�, RXR�,
and RXR�. RARs bind both all-trans- and 9-cis-RA,
whereas only the 9-cis-RA stereoisomer binds to RXRs.
As RXR/RAR heterodimers, these receptors control the
transcription of RA target genes through binding to
RA-response elements. This review is focused on the
structure, mode of action, ligands, expression, and

pharmacology of RXRs. Given their role as common
partners to many other members of the nuclear recep-
tor superfamily, these receptors have been the subject
of intense scrutiny. Moreover, and despite numerous
studies since their initial discovery, RXRs remain
enigmatic nuclear receptors, and there is still no con-
sensus regarding their role. Indeed, multiple ques-
tions about the actual biological role of RXRs and the
existence of an endogenous ligand have still to be an-
swered.

Introduction

The first identified retinoid X receptor (RXR1), re-
ferred to as RXR� (NR2B1), was initially described as an
orphan receptor (Mangelsdorf et al., 1990). However, it
specifically responded to retinoids because high concen-
trations of all-trans-retinoic acid (ATRA) could activate
RXR�, leading to the term RXR. Further it was found
that 9-cis-retinoic acid (9CRA), an isomer of ATRA, is a
high-affinity ligand for RXR�, as well as for the two
additional related subtypes, RXR� (NR2B2) and RXR�
(NR2B3), that were later discovered (Rowe et al., 1991;
Yu et al., 1991; Heyman et al., 1992; Leid et al., 1992;
Levin et al., 1992; Mangelsdorf et al., 1992). Despite the

fact that 9CRA also displays a high affinity for all three
retinoic acid receptors (RARs), RARs exhibit less homol-
ogy with RXRs than with the thyroid hormone receptor
(TR). Indeed, both RARs and RXRs belong to two differ-
ent groups of the nuclear receptor superfamily, suggest-
ing very different functions (Laudet and Gronemeyer,
2002). The actual significance of the 9CRA-binding ca-
pacity for both RXRs and RARs remains to be estab-
lished. Importantly, RXRs were also independently
identified as factors necessary for efficient binding to
DNA of several members of the nuclear receptor super-
family and were shown to form heterodimers with these
other nuclear receptors (Laudet et al., 1992; Leid et al.,
1992; Glass, 1994). Furthermore, in vitro studies have
shown that the RXRs can also form RXR-RXR ho-
modimers, raising the question of the existence of an
independent RXR signaling pathway (Mangelsdorf et
al., 1991; Mader et al., 1993). Because of these features,
RXRs seem unique among the members of the nuclear
receptor superfamily. Moreover, and despite numerous
studies since their initial discovery, RXRs remain enig-
matic nuclear receptors, and there is still no consensus
regarding their role. Indeed, multiple questions about
the actual biological role of RXRs and the existence of an
endogenous ligand have still to be answered.

Although all these basic questions still remain unan-
swered or are controversial, it is clear that RXRs are
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essential players in several pathways because they form
many heterodimers and can act as ligand-activated
transcription factors. Ligand activation of RXRs has
potentially pleiotropic effects on numerous biological
pathways and hence therapeutic opportunities, as
demonstrated by the clinical use of RXR-selective li-
gands, referred to as rexinoids, for the treatment of
cancer and metabolic diseases (Thacher et al., 2000;
Altucci and Gronemeyer, 2001; Chawla et al., 2001;
Clarke et al., 2004; Dawson, 2004; Gronemeyer et al.,
2004; Szanto et al., 2004; Dragnev et al., 2005; Shulman
and Mangelsdorf, 2005).

The RXRs

The three RXR subtypes originate from three distinct
genes. For each subtype, several isoforms exist that dif-
fer from one another in their N-terminal A/B domain
(Chambon, 1996). There are two major isoforms each for
RXR� (�1 and �2), RXR� (�1 and �2), and RXR� (�1 and
�2) (Fleischhauer et al., 1992; Liu and Linney, 1993;
Nagata et al., 1994; Brocard et al., 1996). So far no
functional characterization of these isoforms has been
performed.

All three RXR subtypes are common heterodimeriza-
tion partners for members of the so-called subfamily 1
nuclear receptors (for a review, see Laudet and Grone-
meyer, 2002). The first identified heterodimeric partners
were the TRs, RARs, and vitamin D receptor (VDR). The
peroxisome proliferator-activated receptors (PPARs),
liver X receptors (LXRs), farnesoid X receptor (FXR),
pregnane X receptor (PXR), and constitutively activated
receptors (CARs) are also included in this group. In vitro
studies demonstrated that these heterodimers act as
ligand-dependent transcriptional regulators by binding
to specific DNA-response elements found into the pro-
moter region of target genes and the interaction of RXR
increases the DNA-binding efficiency of its partner.
Moreover, both in vitro and in vivo approaches have
revealed that all these nuclear receptors require RXR as
a heterodimerization partner for their function (Laudet
and Gronemeyer, 2002). In addition, RXRs form het-
erodimers with two members of the small nerve growth
factor-induced clone B (NGFIB) subfamily, namely NG-
FIB and NURR1, which can also interact with DNA as
monomers and homodimers (Forman et al., 1995; Per-
lmann and Jansson, 1995). In most cases, the RXR part-
ner does not exhibit a marked preference for one of the
three RXR subtypes.

Importantly, numerous heterodimers that contain
RXRs can recognize distinct types of response elements.
For instance, RXR-RAR heterodimers bind to a direct
repeat of the AGGTCA core motif with a 5-base pair
spacing (DR-5) and DR-2, whereas RXR-TR and RXR-
LXR bind to DR-4, RXR-VDR and RXR-PXR to DR-3,
and RXR-PPAR to DR-1 (for a review, see Glass, 1994).
Then, the spacing is determinant for the specificity of

the binding. Nevertheless, the sequence of the core motif
itself, the sequence of the spacer, or that of the flanking
nucleotides can also play a role in this interaction. Be-
cause RXRs are obligate heterodimerization partners for
these nuclear receptors, the number of their potential
target genes is tremendous.

RXRs can also form homodimers in vitro that can bind
to DNA through DR-1 elements, suggesting the exis-
tence of a RXR-specific signaling (Mangelsdorf et al.,
1991; Mader et al., 1993). Interestingly, it has been
recently demonstrated that in vivo RXR homodimers
could activate PPAR target genes containing a DR-1
(Ijpenberg et al., 2004). Nevertheless, the question of the
existence and the functional role of RXR-RXR ho-
modimers remains open. RXR� mutants that exhibit
increased homodimerization over heterodimerization ca-
pacity could help to address this question in an in vivo
setting (Vivat-Hannah et al., 2003).

No interaction was found between RXRs and the core-
pressors nuclear receptor corepressor and silencing me-
diator for retinoid and thyroid hormone receptors, sug-
gesting that in absence of ligand RXR-RXR homodimers
have a weak repressive activity (Schulman et al., 1996;
Zhang et al., 1997). It is thought that helix 12 of RXRs
masks the corepressor binding site of RXRs (Zhang et
al., 1999). Several studies have clearly shown that coac-
tivators can be recruited in presence of an RXR agonist
as confirmed by crystal structural investigations (Egea
et al., 2002).

In the context of RXR heterodimers, nuclear receptor
partners can be classified into functionally distinct per-
missive and nonpermissive groups (Leblanc and Stun-
nenberg, 1995; Shulman et al., 2004). RXR heterodimers
that contain permissive partners can be activated by
agonists of both RXR and the partner receptor indepen-
dently or together to induce a synergistic activation.
PPARs, LXRs, FXR, and PXR belong to this permissive
NR class. In contrast, heterodimers formed by RXR and
a nonpermissive partner (RARs, TRs, and VDR) cannot
be activated by an RXR agonist but only by the agonist
of the partner receptor (Westin et al., 1998). This phe-
nomenon, referred to as “subordination” or “silencing,” is
not due to an inability of RXR for binding a ligand when
the partner is unliganded because several reports have
shown that in the context of heterodimers RXR retains
the ability to bind a ligand (Cheskis and Freedman,
1996; Thompson et al., 1998; Germain et al., 2002).
Rather, nonpermissive partners inhibit RXR activation.
However, when the partner is liganded by an agonist or
certain antagonists, an RXR agonist can trigger an ac-
tivation, leading to a synergistic activation through a
mechanism that engages a distinct receptor to receptor
allosteric signaling pathway (Apfel et al., 1995; Roy et
al., 1995; Chen et al., 1996; Germain et al., 2002; Shul-
man et al., 2004). Interestingly, permissive RXR het-
erodimer partners are receptors for dietary lipids that
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bind with low affinity, whereas nonpermissive partners
correspond to high-affinity hormone receptors.

Ligands

One the most controversial and unsolved questions
regarding RXR research is whether or not endogenous
ligands exist and, if so, whether they are able to activate
RXRs in vivo. Nevertheless, the role of RXRs in devel-
opment and the importance of the AF-2 function of
RXR� was established by knockout experiments (Mark
and Chambon, 2003). Moreover, studies using reporter
transgenic mice based on GAL4DBD-RXRLBD fusion
constructs and a �-galactosidase reporter gene under
the control of Gal binding sites, which allow detection of
activated RXR in vivo, revealed the important role
played by ligand activation in RXR function. Indeed,
RXR was found to be active in specific regions of the
spinal cord, suggesting the presence of endogenous li-
gands (Solomin et al., 1998). All of these results have
been confirmed by the use of a comparable system with
green fluorescent proteins as reporter (Luria and Fur-
low, 2004). The search for a natural RXR ligand led to
the discovery of 9CRA as a high-affinity ligand for all
three RXRs, which also activates the RXR-RXR ho-
modimers (Heyman et al., 1992). Even though the exis-
tence of a 9CRA signaling pathway is supported by the
reported presence of this compound in the developing
embryo and by the identification of enzymes that may
contribute to its biosynthesis, 9CRA has not been clearly
detected in mammalian cells (Mertz et al., 1997; Romert
et al., 1998). Hence, it cannot definitively be concluded
that this compound is the actual natural ligand for
RXRs. Phytanic acid, a branched-chain fatty acid, and
the n-3 polyunsaturated fatty acid (docosahexaenoic
acid), have subsequently been proposed as natural li-
gands for RXRs (de Urquiza et al., 2000; Lampen et al.,
2001; Lemotte et al., 1996). Phytanic acid is present in
plasma at micromolar concentrations, which are re-
quired for RXR activation. Interestingly, phytanic acid
can also activate PPAR� (Zomer et al., 2000). Docosa-
hexaenoic acid originates from fish oil and is highly
enriched in mammalian brain. Nevertheless, none of
these molecules has proven to be the bona fide endoge-
nous ligand so far, and further investigations are re-
quired to definitively solve this critical issue.

Initially, 9CRA was identified as an agonist for RXRs,
but it is not an RXR-selective compound because it dis-
plays a high affinity for all three RARs (Allenby et al.,
1993). Synthetic compounds (rexinoids) that only recog-
nize RXRs became very valuable to decipher the role
played by these receptors and their ligand-dependent
activities and to better understand the relationship be-
tween the partners in the RXR heterodimers. Crystal
structures of both RXR and RAR LBDs bound to various
ligands have revealed that the ligand-binding pockets
(LBPs) of RXRs and RARs exhibits very different shapes

(Renaud et al., 1995; Bourguet et al., 2000; Egea et al.,
2002; Germain et al., 2004). A comparison of RAR� and
RXR� LBPs indicates that, in contrast to the linear I
shape of RAR� LBP, RXR� LBP shows a more restrictive
and shorter L shape. Because of its flexibility, 9CRA can
adapt to both LBPs, according to its binding capacity
(Klaholz et al., 1998). Importantly, the distinctive RXR
LBP structural feature allows the generation of ligands
that discriminate between RARs and RXRs. After the
first published series of synthetic compounds that acti-
vate the RXR-RXR homodimer appeared, numerous ad-
ditional selective RXR ligands have been reported (Leh-
mann et al., 1992; Dawson, 2004). The most widely use
rexinoids are SR11237, LG100268, and LGD1069, which
is currently used in therapy (see below) (Boehm et al.,
1994, 1995). Nevertheless, no rexinoid with apparent
subtype selectivity has been identified so far. This issue
seems very challenging because all residues that consti-
tute the LBP of the three RXRs are highly conserved.
RXR-selective antagonists have also been identified (for
reviews, see Thacher et al., 2000; Dawson, 2004;
Kagechika and Shudo, 2005; Vivat-Hannah and Zusi,
2005). Interestingly, among the reported RXR antago-
nists, LG100754 has been described as an RXR antago-
nist that can transcriptionally activate on its own both
RXR�-RAR� and RXR�-PPAR� heterodimers, suggest-
ing a particular conformation of RXR LBD induced by
this compound (Lala et al., 1996).

Expression and Function of RXRs

Disparities are observed in the expression pattern of
the RXRs. RXR� is widely distributed and can be de-
tected in almost every tissue (Hamada et al., 1989; Yu et
al., 1991; Mangelsdorf et al., 1992; Dolle et al., 1994).
RXR� is predominantly expressed in liver, kidney, epi-
dermis, and intestine and is the major RXR in skin
(Mangelsdorf et al., 1990, 1992; Dolle et al., 1994). RXR�
is mostly restricted to the muscle and certain parts of
the brain as well as to the pituitary (Mangelsdorf et al.,
1992; Dolle et al., 1994; Haugen et al., 1997; Chiang et
al., 1998).

In addition to the fact that RXRs are heterodimeric
partners of multiple nuclear receptors regulating vari-
ous developmental and metabolic processes, this RXR
distribution suggests that RXRs play critical roles in a
wide range of these processes. To address the issue of
the RXR functional role in vivo, knockout of all three
RXRs has been performed in the mouse (for comprehen-
sive reviews, see Kastner et al., 1995; Mark and Cham-
bon, 2003; Szanto et al., 2004; Mark et al., 2006). This
informative genetic approach showed that the inactiva-
tion of the RXR� gene has more severe consequences
than the ablation of RXR� and RXR�. The loss of RXR�
is lethal during fetal life (Kastner et al., 1994; Sucov et
al., 1994). The major observed defect is a hypoplasia of
the myocardium that seems to be the principal cause of
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animal death that occurs by cardiac failure at approxi-
mately embryonic day 14.5. Furthermore, fetuses lack-
ing RXR� have ocular malformations (Kastner et al.,
1994). Importantly, both defects due to RXR� inactiva-
tion are similar to those observed in vitamin A-deficient
fetuses and in RAR��/���/� double mutants (Kastner et
al., 1997). This suggests that RXR� is essential in the
transduction of a retinoid signal required for myocardial
development and ocular morphogenesis, supporting the
idea that RXR� is involved in retinoid signaling in vivo.
This view is also supported by the fact that RXR� is
involved in the mediation of a teratogenic effect due to
administration of exogenous retinoids. Indeed, treat-
ment of embryos with vitamin A induces limb trunca-
tions that do not occur in RXR� mutants (Sucov et al.,
1995).

The ablation of RXR� led to �50% in utero lethality
(Kastner et al., 1996). Those mice that survive seem
normal except that the males are sterile and exhibit
testicular defects and abnormal spermatid maturation,
leading to defects of spermatozoa. Also RXR� mutation
leads to abnormal lipid metabolism in Sertoli cells, sug-
gesting functional interactions of RXR� with other nu-
clear receptors that control lipid metabolism (Mascrez et
al., 2004).

RXR�-null mutants seem normal and are fertile
(Krezel et al., 1996). Nevertheless, these mice have
higher serum levels both of thyroxine and thyroid-stim-
ulating hormone and an increased metabolic rate com-
pared with wild-type animals (Brown et al., 2000). This
is in agreement with the expression of RXR� in the
thyrotrope cells of the anterior pituitary gland.

In addition to the above single-null mutant mice, mu-
tants lacking a pair or more of RXR subtypes or RXR/
RAR double-null mutants were generated. For instance
RXR�� double mutants exhibit locomotor deficiencies
due to a dysfunction in the dopamine signaling pathway
(Krezel et al., 1998). Given the number of combinations,
a complete description of the results, mainly found by
Pierre Chambon’s group, is not possible here (for recent
reviews, see Mark and Chambon, 2003; Mark et al.,
2006). Together these results demonstrate that the
RXR-RAR heterodimers transduce in vivo the retinoid
signal and that specific heterodimers are involved in
given developmental processes. On the other hand, the
differentiation of the F9 murine embryonal carcinoma
cells by retinoic acid has been investigated in the context
of various such combinations of mutants (Chiba et al.,
1997). These cellular studies led to the conclusion that
distinct RXR-RAR heterodimers have different roles in
the control of target genes in F9 cells. Moreover, it has
been shown that RXR� is specifically required for the
correct differentiation of retinoid-treated F9 cells (Clif-
ford et al., 1996).

Nevertheless, all these studies have shown that some
functional redundancy exists between RXRs. In addi-
tion, owing to the in utero lethality, observed, for in-

stance, in RXR� inactivation, analyses of the specific
RXR functions at postnatal stages and in adult animals
are not possible using classic knockout experiments. To
elude these limitations, conditional knockouts were gen-
erated. The selective disruption of RXR� from hepato-
cytes led to the conclusion that RXR� is a crucial func-
tional partner for many other nuclear receptors such as
LXR�, PXR, FXR, CAR�, and PPAR� (Wan et al., 2000).
Without RXR�, all these receptors cannot activate their
target genes efficiently. Hence, the absence of RXR�
from the liver affects many metabolic processes. Fur-
thermore, using an elegant method based on a cell type-
specific expression of an inducible Cre recombinase that
is only active in the presence of tamoxifen, somatic null
mutation of RXR� has been specifically performed in
epidermal keratinocytes of the adult mouse (Li et al.,
2005; Metzger et al., 2005). This selective ablation shows
that RXR� plays a critical role during skin development,
notably in hair cycling (Li et al., 2000, 2001). Because
VDR-null mutant mice display a similar phenotype, it is
likely that RXR� exerts its role in the skin through the
VDR-RXR� heterodimer.

Lastly, to address the critical issue of whether the
transcriptional activity of RXR� is required for its func-
tion in vivo or whether its heterodimerization capacity is
the principal role of RXR�, mice were generated in
which either most of the terminal A/B domain or helix 12
of the LBD, that harbors AF-1 and AF-2 function, re-
spectively, was lacking (Mascrez et al., 2001; Mark and
Chambon, 2003). Eliminating AF-2 function resulted in
a number of (but not all) abnormalities similar to those
exhibited by RXR� null mice, suggesting that the RXR�
transactivation function was required for the develop-
mental functions of the RXR�-RAR heterodimers. Ani-
mals expressing truncated RXR� lacking AF-1 function
also displayed some similar or less severe abnormalities,
showing that AF-2 seems to be more important than
AF-1 for the function of RXR during embryonic develop-
ment.

Therapy and Diseases

Although the mechanisms of action of rexinoids in
cancer therapy and chemoprevention are poorly under-
stood, clinical examination of these compounds is in
progress. Strikingly, the synthetic rexinoid LGD1069
(bexarotene, Targretin) was recently approved for treat-
ing refractory advanced-stage cutaneous T-cell lym-
phoma (Heald, 2000; Hurst, 2000; Kempf et al., 2003;
Zhang and Duvic, 2003). However, adverse effects are
observed, such as the induction of hyperglyceridemia
(Lowe and Plosker, 2000). Nevertheless, several clinical
trials are ongoing to assess the potential of LGD1069 for
other disease indications (Smit et al., 2004; Dragnev et
al., 2005). The combination with other therapeutic
agents may likewise enhance the clinical value of rexi-
noids (Crowe and Chandraratna, 2004; Dawson, 2004;
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Michaelis et al., 2004). On the other hand, the existence
of a RAR-independent RXR signaling pathway that al-
lows the differentiation of cells may also be a potential
target in cancer research (Benoit et al., 1999; Altucci et
al., 2005). Indeed, a cross-talk between rexinoids and
protein kinase A signaling pathways has been demon-
strated that can induce differentiation of retinoic
acid-resistant t(15:17) leukemic promyeloblasts. This
example highlights the anticancer potential of the
combination of rexinoids with other signaling drugs.

Drugs that target heterodimerization partners of
RXRs are already in clinical use for the treatment of
cancer, endocrine disorders, dermatological diseases,
and the metabolic syndrome (see the relevant articles)
(Shulman and Mangelsdorf, 2005). Whereas the actual
functional role of RXRs in vivo needs to be further clar-
ified, through its heterodimeric interaction with a large
number of other nuclear receptors that are involved in
many processes, RXRs may play a role in a wide variety
of diseases (Chawla et al., 2001). Notably, RXRs are
obligate heterodimer partners for nuclear receptors re-
lated to lipid physiology, namely PPARS, LXRs, and
FXRs. Furthermore, the observation that liver-specific
inactivation of RXR in mice results in abnormalities in
all metabolic pathways substantiates the pleiotropic role
of this receptor (Wan et al., 2000). Because such permis-
sive heterodimers can be activated by rexinoids, RXR-
selective ligands have promising potential as clinical
agents in the field of metabolic syndrome. For example,
heterodimerization with RXR is required for PPAR� ac-
tivity including the expression of genes involved in the
uptake of glucose in muscle, lipid metabolism, and en-
ergy expenditure (Tontonoz et al., 1994). PPAR� has
been implicated in several important metabolic diseases.
The antidiabetic agents, thiazolidinediones (TZDs) se-
lectively bind to PPAR� and are widely used as drugs
that improved insulin sensitivity in patients with insu-
lin resistance syndrome despite some associated adverse
effects (Lehmann et al., 1995; Berger et al., 1996;
Reginato and Lazar, 1999; Picard and Auwerx, 2002).
Given the implication of the RXR-PPAR� heterodimers
in this pathological condition, the hypothesis that rexi-
noids would have properties similar to those of the TZDs
in type 2 diabetes was established (Mukherjee et al.,
1997). Accordingly, the synthetic rexinoid LG100268,
which has been widely investigated, can activate RXR-
PPAR� heterodimers and shows several beneficial ef-
fects in rodent models of insulin resistance and type 2
diabetes, as do TZDs (Mukherjee et al., 1997; Lenhard et
al., 1999). However, whereas both rexinoids and TZDs
can activate RXR-PPAR� heterodimers, these com-
pounds show pharmacological and mechanistic differ-
ences in their in vivo activity (Cha et al., 2001; Shen et
al., 2004). On the other hand, LG100268 causes marked
changes in cholesterol balance in mice, demonstrating
the potential of rexinoids for the treatment of metabolic
diseases. This effect is due to the inhibition of cholesterol

absorption through the RXR-LXR heterodimer that in-
creases cholesterol efflux and through the RXR-FXR
heterodimer that reduces the bile acid pool (Repa et al.,
2000). Interestingly, in contrast with the other rexinoid
LGD1069 that is currently used in therapy, LG100268
did not seem to cause hypertriglyceridemia, whereas
both ligands are full RXR agonists in in vitro assays
(Standeven et al., 1996). This observation suggests that
different RXR agonists do not necessarily display the
same biological effects. Consistent with this assumption,
novel rexinoids that retain the insulin-sensitizing activ-
ity but exhibit substantially reduced side effects have
recently been described previously (Michellys et al.,
2003; Leibowitz et al., 2006). Furthermore, additional
differences between rexinoids can be found in their abil-
ity to target specific heterodimers (selective RXR modu-
lators) (Leibowitz et al., 2006). For instance, rexinoid
LG100754, described initially as a RXR-RXR homodimer
antagonist, also functions as an agonist of the RXR-
PPAR� heterodimer, but not other permissive het-
erodimers formed with LXR, FXR, or NGFIB (Lala et al.,
1996; Schulman et al., 1997). With PPAR� playing a
major role in the regulation of both glucose and lipid
metabolism, rexinoid LG100754 efficiently induces
lower glucose levels in type 2 diabetic mice (Cesario et
al., 2001; Forman, 2002).

Tables 1 through 3 summarize the major molecular,
physiological, and pharmacological properties for all
three RXR subtypes.
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TABLE 1
RXR�

Receptor Nomenclature NR2B1
Receptor code 4.1:RX:2:B1
Molecular information Hs:462aa, P19793, chr. 9q34.31–3

Rn:467aa, P287004

Mm: 467aa, Q05343, chr. 25–8

DNA binding
Structure Homodimer, heterodimer, RXR partner
HRE core sequence AGGTCA (DR-1, DR-2, DR-3, DR-4, DR-5)

Partners TR2 and TR4 (physical, functional): DNA binding7,9,10; VDR (physical, functional): DNA binding9,10; RAR�,
RAR�, and RAR� (physical, functional): DNA binding7,9–14; PPAR�, PPAR�, and PPAR� (physical,
functional): DNA binding15,16; LXR� and LXR� (physical, functional): DNA binding17–20; FXR (physical,
functional): DNA binding21; PXR (physical, functional): DNA binding22–25; CAR (physical, functional):
DNA binding26,27; NGFI-B (physical, functional): DNA binding28,29; NURR1 (physical, functional): DNA
binding29

Agonists CD3254 (3 nM), LG100268 (3.2 nM), LGD1069 (36 nM),* 9-cis-retinoic acid (6.7–73 nM),* methoprenic acid
(2 �M) �IC50�8,12,30–39; AGN194204 (0.4 nM) �Kd�40; SR11237, docosahexaenoic acid, phytanic acid41–44

Antagonists LG100754 (3.4 nM) �IC50�36,45,46; PA451, UVI300347,48

Coactivators NCOA1, NCOA2, NCOA3, PGC-1�, PPARBP, TBP, TAFII110, TAFII28, CREBBP, p30036,49–59

Biologically important
isoforms

RXR�1 {Mm}: differs from RXR�2 in the A/B domain60; RXR�2 {Mm}: specifically expressed in testis60

Tissue distribution Liver, lung, muscle, kidney, epidermis, and intestine; major isotype in the skin {Hs, Mm, Rn} �Northern
blot, in situ hybridization, Western blot�3,8,61

Functional assays Differentiation of 3T3-L1 cells to adipocytes measured by the accumulation of triglyceride produced within
the cytoplasm of the adipocyte {Mm}33,62,63; induction of apoptosis (associated with RAR� activation) in
leukemia cell lines {Hs}38,64; primitive endodermal differentiation and morphological differentiation in F9
murine embryonal carcinoma cell line {Mm}65,66

Mutant phenotype Knockout mice have hypoplasia of the myocardium, which leads to animal death due to cardiac failure at
around embryonic day 14.5; animals also have ocular malformation {Mm} �knockout�51,67–73

aa, amino acid; chr, chromosome; HRE, hormone response element; NGFI-B, nerve growth factor-induced clone B; PGC-1�, PPAR coactivator-1�; PPARBP, PPAR-binding
protein; TBP, TATA-box binding protein; CREBBP, cAMP response element-binding protein-binding protein.

* Radioligand.
1. Almasan A, Mangelsdorf DJ, Ong, ES, Wahl GM, and Evans RM (1994) Chromosomal localization of the human retinoid X receptors. Genomics 20:397–403.
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TABLE 2
RXR�

Receptor Nomenclature NR2B2
Receptor code 4.10.1:RX:2:B2
Other names H-2RIIBP, RCoR-1,
Molecular information Hs: 533aa, P28702, chr. 6p21.31,2

Rn: 458aa, P497433

Mm: 520aa, P28704, chr. 172,4–7

DNA binding
Structure Homodimer, heterodimer, RXR partner
HRE core sequence AGGTCA (DR-1, DR-2, DR-3, DR-4, DR-5)

Partners TR2 and TR4 (physical, functional): DNA binding2,8–10; VDR (physical, functional): DNA
binding8–10; RAR�, RAR�, and RAR� (physical, functional): DNA binding2,8–14; PPAR�,
PPAR�, and PPAR� (physical, functional): DNA binding10,15,16; LXR� and LXR� (physical,
functional): DNA binding10,17–21; FXR (physical, functional): DNA binding10,22; PXR
(physical, functional): DNA binding10,23–26; CAR (physical, functional): DNA binding10,27,28;
NGFI-B (physical, functional): DNA binding10,29,30; NURR1 (physical, functional): DNA
binding10,30

Agonists LG100268 (3–6.8 nM), LGD1069 (21 nM),* 9-cis-retinoic acid (6.2–117 nM),* �IC50�7,31–39;
AGN194204 (3.6 nM) �Kd�40

Antagonists LG100754 (10 nM) �IC50�36,41,42

Coactivators NCOA1, NCOA2, NCOA310,43–47

Biologically important isoforms RXR� 1 {Hs, Mm}: differs from RXR� 2 in the A/B domain48,49; RXR� 2 {Hs, Mm}49,50

Tissue distribution Ubiquitous {Hs, Mm, Rn} �Northern blot, in situ hybridization, Western blot�3,4,7,51

Functional assays Differentiation of 3T3-L1 cells to adipocytes measured by the accumulation of triglyceride
produced within the cytoplasm of the adipocyte {Mm}34,52,53; induction of apoptosis
(associated with RAR� activation) in leukemia cell lines {Hs}38,54

Mutant phenotype Male sterility due to defective spermatogenesis, abnormal lipid metabolism in Sertoli cells
and behavioral defects {Mm} �knockout�18,55–57

aa, amino acid; chr, chromosome; HRE, hormone response element; NGFI-B, nerve growth factor-induced clone B.
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TABLE 3
RXR�

Receptor Nomenclature NR2B1
Receptor code 4.10.1:RX:2:B3
Molecular information Hs: 463aa, P48443, chr. 1q22-q231,2

Mm: 463aa, P28705, chr. 12–5

DNA binding
Structure Homodimer, heterodimer, RXR partner
HRE core sequence AGGTCA (DR-1, DR-2, DR-3, DR-4, DR-5)

Partners TR2 and TR4 (physical, functional): DNA binding5–8; VDR (physical, functional): DNA binding6–8;
RAR�, RAR�, and RAR� (physical, functional): DNA binding5–12; PPAR�, PPAR�, and PPAR�
(physical, functional): DNA binding8,13,14; LXR� and LXR� (physical, functional): DNA
binding8,15–18; FXR (physical, functional): DNA binding8,19; PXR (physical, functional): DNA
binding8,20–23; CAR (physical, functional): DNA binding8,24,25; NGFI-B (physical, functional): DNA
binding8,26,27; NURR1 (physical, functional): DNA binding8,27

Agonists LG100268 (3–9.7 nM), LGD1069 (29 nM),* 9-cis-retinoic acid (9.7–85 nM)* �IC50�28–36;
AGN194204 (3.8 nM) �Kd�37

Antagonists LG100754 (12.2 nM) �IC50�33,38,39

Coactivators NCOA1, NCOA2, NCOA38,40–44

Biologically important isoforms RXR�1 {Mm}: differs from RXR� 2 in the A/B domain45,46; RXR�2 {Mm}45,46.
Tissue distribution RXR�1 is expressed in the brain and muscle, whereas RXR� 2 is highly expressed in both cardiac

and skeletal muscles {Mm, Rn} �Northern blot, in situ hybridization, Western blot�45,47–49

Mutant phenotype Knockout mice have metabolic and behavioral defects {Mm} �knockout�50–54

aa, amino acid; chr, chromosome; HRE, hormone response element; NGFI-B, nerve growth factor-induced clone B.
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